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Lecture 15: October 23

Recall the following definition from last time. A polarized sl2(C)-Hodge structure
of weight n is a representation of sl2(C) on a finite-dimensional vector space V ,
together with a compatible hermitian pairing h : V ⊗C V → C and a filtration F ,
subject to three conditions:

(1) For every p ∈ Z, one has H(F p) ⊆ F p.
(2) For every p ∈ Z, one has Y (F p) ⊆ F p−1.

(3) The filtration e−
1
2Y F is the Hodge filtration of a Hodge structure of weight

n, polarized by h.

We showed last time that the subspace V sl2(C) of sl2(C)-invariants has a polarized
Hodge structure of weight n, whose Hodge filtration is induced by F (or, equiva-

lently, e−
1
2Y F ). This has many useful consequences. For example, we can show that

the sl2(C)-Hodge structure on the irreducible representation S` that we constructed
last time is essentially unique.

Corollary 15.1. Suppose we have a polarized sl2(C)-Hodge structure on S` of
weight `. Then the filtration F agrees with the filtration constructed in Example 14.7
up to a shift, and the pairing h agrees with the pairing constructed there up to
rescaling by a nonzero real number.

Proof. On the vector space HomC(S`, S`), we get a polarized sl2(C)-Hodge structure
of weight ` − ` = 0 by using the given sl2(C)-Hodge structure constructed on the
first argument, and the one constructed in Example 14.7 on the second argument.
If we denote by F0 the filtration constructed there, we have as usual

F k HomC(S`, S`) =
{
A : S` → S`

∣∣ AF p ⊆ F p+k0 for every p ∈ Z
}
.

As S` is irreducible, Schur’s lemma gives

HomC(S`, S`)
sl2(C) = C · id,

and according to Proposition 14.8, this one-dimensional subspace has a Hodge
structure of weight 0. For dimension reasons, id must therefore be of Hodge type

(k,−k) for some integer k; but this says exactly that F p = F p+k0 for every p ∈ Z.
So the two filtrations are the same up to a shift by k steps.

Now let us consider the pairing. Since the given pairing h is compatible with
the action by sl2(C), all its values are determined by h(e0, e`), which is necessarily
real. Here e0, e1, . . . , e` ∈ S` is the basis constructed in Example 14.7. So the two
pairings are the same up to multiplication by the real number h(e0, e`). In fact,
we can be more precise about the sign. Namely, we have e0 ∈ F `0 = F `−k, which

means that e−
1
2Y e0 has Hodge type (`− k, k) for the given sl2(C)-Hodge structure.

Since h is a polarization, this gives

(−1)`−kh(e−
1
2Y e0, e

− 1
2Y e0) > 0.

After simplifying the expression, we arrive at (−1)kh(e0, e`) > 0. �

Proof of Theorem 14.1. We can now prove Theorem 14.1. Let V be any polar-
ized sl2(C)-Hodge structure of weight n. Our starting point is the decomposition

V ∼=
⊕

`∈N
S` ⊗C Homsl2(C)(S`, V ).

Fix some ` ≥ 0. From the polarized sl2(C)-Hodge structures on S` and V , the
space HomC(S`, V ) inherits a polarized sl2(C)-Hodge structure of weight n− `. As
usual, the filtration is given by the formula

F k HomC(S`, V ) =
{
f : S` → V

∣∣ f(F pS`) ⊆ F p+kV for all p ∈ Z
}
,
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and the hermitian pairing

HomC(S`, V )⊗C HomC(S`, V )→ C, (f, g) 7→ 1

`+ 1
tr(g∗ ◦ f)

is a polarization. Here g∗ : V → S` is the adjoint of g : S` → V with respect to the
pairings on S` and V ; the reason for the factor 1

`+1 will become clear in a moment.
Proposition 14.8 tells us that the subspace

W` = Homsl2(C)(S`, V ) = HomC(S`, V )sl2(C)

has a Hodge structure of weight n− `, with Hodge filtration

F kW` =
{
f ∈W`

∣∣ f(F pS`) ⊆ F p+kV for every p ∈ Z
}
,

and polarized by the restriction of the pairing 1
`+1 tr(g∗ ◦ f). But for f, g ∈W`, the

composition g∗ ◦f is an endomorphism of S` as an sl2(C)-representation, hence (by
Schur’s lemma) a multiple of the identity. Thus g∗ ◦f = c(f, g) id for some constant
c(f, g) ∈ C, and because of the factor 1

`+1 , the trace of this operator equals c(f, g).

Lemma 15.2. With the above Hodge structures on W`, the evaluation mapping
⊕

`∈N
S` ⊗C W` → V

is an isomorphism of polarized sl2(C)-Hodge structures of weight n.

Proof. We know that the mapping is an isomorphism of sl2(C)-representations. Let
us first show that this isomorphism is compatible with the hermitian pairings on
both sides. Given x, y ∈ S` and f, g ∈W`, the pairing between x⊗ f and y ⊗ g is

hS`(x, y) · 1

`+ 1
tr(g∗ ◦ f) = hS`(x, y) · c(f, g) = hS`

(
c(f, g)x, y

)

= hS`
(
g∗f(x), y

)
= hV

(
f(x), g(y)

)
.

Here we used the fact that g∗ ◦ f = c(f, g) id. Since the different isotypical com-
ponents are orthogonal with respect to hV , this is enough to conclude that the
isomorphism respects the pairings.

Now we only have to prove that the mapping is an isomorphism of Hodge struc-
tures of weight n. Let p ∈ Z be an integer. As with any tensor product, the
(p, n− p)-subspace in the Hodge decomposition of the left-hand side is

⊕

`∈N

⊕

k∈Z
Sk,`−k` ⊗C W

p−k,n−`−p+k
` ,

because the Hodge structure on S` has weight `, and the Hodge structure on W`

has weight n− `. But

W p−k,n−`−p+k
` =

{
f : S` → V

∣∣ f(Sj,`−j` ) ⊆ V j+p−k,n−j−p+k for all j ∈ Z
}
,

and so the evaluation mapping takes Sk,`−k` ⊗C W
p−k,n−`−p+k
` into V p,n−p, and is

therefore a morphism of Hodge structures of weight n. �

We already know from Lecture 14 that each S` is actually a polarized Hodge-
Lefschetz structure of weight `. Since sl2(C) acts trivially on the Hodge structures
W`, it follows that ⊕

`∈N
S` ⊗C W`

is a polarized Hodge-Lefschetz structure of weight `+ (n− `) = n. Because of the
lemma, the same thing is then true for V . The last assertion in Theorem 14.1 is
left as an exercise.
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Exercise 15.1. Let S ∈ End(V ) be an endomorphism of the sl2(C)-representation
that is compatible with the pairing h and satisfies S(F pV ) ⊆ F pV for all p ∈ Z.
Prove that S is automatically an endomorphism of the Hodge-Lefschetz structure
on V .

General facts about sl2(C)-Hodge structures. In this section, we prove two
small results about sl2(C)-Hodge structures that were needed above. Suppose that
V and W are polarized sl2(C)-Hodge structures of the same weight n, with polar-
izations hV and hW ; for the sake of clarity, we denote the two filtrations by F •V
and F •W .

Definition 15.3. A linear mapping f : V → W is a morphism of sl2(C)-Hodge
structures of weight n if f is a morphism of sl2(C)-representations and also a mor-
phism of Hodge structures of weight n.

It follows from the definition that morphisms of sl2(C)-Hodge structures are
strictly compatible with the filtrations FV and FW .

Lemma 15.4. If f : V → W is a morphism of sl2(C)-Hodge structures, then f is
a filtered morphism, meaning that f(V ) ∩ F pW = f(F pV ) for all p ∈ Z.

Proof. Morphisms of Hodge structures are filtered, and so f(V ) ∩ e− 1
2Y F pW =

f(e−
1
2Y F pV ). The claim follows by applying the operator e

1
2Y to both sides. �

Now suppose that V and W are polarized sl2(C)-Hodge structures of weight n
respectively m. Let us describe the induced sl2(C)-Hodge structure on HomC(V,W )
in more detail. As usual, the filtration is given by

F k HomC(V,W ) =
{
f : V →W

∣∣ f(F pV ) ⊆ F p+kW for all p ∈ Z
}
.

The induced representation of sl2(C) is easy to describe: for f : V →W , one has

(Hf)(v) = Hf(v)−f(Hv), (Xf)(v) = Xf(v)−f(Xv), (Y f)(v) = Y f(v)−f(Y v).

Observe that sl2(C) acts trivially on a linear mapping f : V →W exactly when f is
a morphism of sl2(C)-representations; therefore HomC(V,W )sl2(C) = Homsl2(C)(V,W ).

As in Lecture 6, the induced pairing on HomC(V,W ) can again be expressed in
terms of the trace. Given a linear mapping f : V → W , we denote by f∗ : W → V
the adjoint with respect to the (nondegenerate) pairings hV and hW ; to be precise,

hW
(
f(v), w

)
= hV

(
v, f∗(w)

)
for all v ∈ V and w ∈W .

On HomC(V,W ), we have the hermitian pairing

(15.5) HomC(V,W )⊗C HomC(V,W )→ C, (f, g) 7→ tr(g∗ ◦ f).

Lemma 15.6. Suppose that V and W are polarized sl2(C)-Hodge structures of
weight n respectively m. Then HomC(V,W ) is a polarized sl2(C)-Hodge structure
of weight m− n, polarized by hermitian pairing in (15.5).

Proof. We need to check that the filtration on HomC(V,W ) satisfies the three con-
ditions in the definition (from Lecture 14). Suppose that f ∈ F k HomC(V,W ). For
any v ∈ F pV , we have f(v) ∈ F p+kW , and therefore

(Hf)(v) = Hf(v)− f(Hv) ⊆ H(F p+kW ) + f(F pV ) ⊆ F p+kW,
which proves that Hf ∈ F k HomC(V,W ). Similarly, Y f ∈ F k−1 HomC(V,W ).

It remains to show that the filtration e−
1
2Y F •HomC(V,W ) defines a Hodge

structure of weight m−n on HomC(V,W ), polarized by the pairing in (15.5). Since

(e−
1
2Y f)(v) = e−

1
2Y f(v)− f(e

1
2Y v),



85

it is not hard to see that

e−
1
2Y F k HomC(V,W )

=
{
f : V →W

∣∣ f
(
e−

1
2Y F pV

)
⊆ e− 1

2Y F p+kW for all p ∈ Z
}

;

but the right-hand side is obviously the Hodge filtration of the induced Hodge
structure on HomC(V,W ), which has weight m− n. The proof that the pairing in
(15.5) polarizes this Hodge structure is similar to the proof of Lemma 6.1. �

The limiting mixed Hodge structure. I already mentioned that Schmid states
his results in the language of mixed Hodge structures. You probably know that a
mixed Hodge structure over Q or R is described by two filtrations: an increasing
weight filtration W•, and a decreasing Hodge filtration F •, such that each

grW` = W`/W`−1

has a Hodge structure of weight `, whose Hodge filtration is

F • grW` = (F • ∩W` +W`−1)/W`−1.

Since the Hodge filtration alone does not determine the Hodge decomposition for ar-
bitrary (complex) Hodge structures, we need three filtrations to describe (complex)
mixed Hodge structures.

Definition 15.7. A mixed Hodge structure on a finite-dimensional vector space H
consists of an increasing filtration W• with W` = 0 for ` � 0 and W` = H for
`� 0, and two decreasing filtrations F • and G•, such that each subquotient

grW` = W`/W`−1

has a Hodge structure of weight `, given by the two induced filtrations

F • grW` = (F • ∩W` +W`−1)/W`−1

G• grW` = (G• ∩W` +W`−1)/W`−1.

The filtration W• is called the weight filtration.

Note. The (p, q)-subspace in the Hodge decomposition of grW` is

F p gr`W ∩Gq grW` =
(F p ∩W` +W`−1) ∩ (Gq ∩W` +W`−1)

W`−1
.

In order to have a mixed Hodge structure on V , the direct sum of these subspaces
(over p+ q = `) must equal grW` , which means concretely that

W` =
∑

p+q=`

(F p ∩W` +W`−1) ∩ (Gq ∩W` +W`−1)

and that, whenever p+ q = `+ 1, one has

(F p ∩W` +W`−1) ∩ (Gq ∩W` +W`−1) = W`−1.

If you think about it, this is actually a fairly complicated set of conditions.

Example 15.8. An R-mixed Hodge structure is a finite-dimensional R-vector space
HR, together with a mixed Hodge structure on H = HR⊗RC, such that the weight
filtration W• is defined over R, and G• = F •. In that case, the Hodge structure on
each grW` is an R-Hodge structure of weight `.

Example 15.9. A mixed Hodge structure is called split if it is a direct sum of Hodge
structures of different weights, with the obvious weight filtration. This is equivalent
to having a decomposition

H =
⊕

i,j∈Z
Hi,j
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with the property that

W` =
⊕

i+j≤`
Hi,j , F p =

⊕

i≥p,j
Hi,j , Gq =

⊕

j≥q,i
Hi,j .

Let us return to the case of a polarized variation of Hodge structure of weight
n on the punctured disk. Recall that we decomposed R ∈ End(V ) as R = RS +
RN , with RS semisimple and RN nilpotent, and that we chose another semisimple
element H ∈ End(V ) that commutes with RS and satisfies [H,RN ] = −2RN . The
monodromy weight filtration W• = W•(RN ) is split by the eigenspaces of H, in the
sense that

W` = E`(H) +W`−1

for every ` ∈ Z. We also constructed the limiting Hodge filtration Flim , by making
the filtration FΨ(0) (from Theorem 9.1) compatible with the operator RS . We then
showed that each eigenspace E`(H) has a polarized Hodge structure of weight n+`,
whose Hodge filtration is induced by Flim . Since

E`(H) ∼= W`/W`−1,

it follows that grW` has a Hodge structure of weight n + `, whose Hodge filtration
is induced by Flim . It can be shown that the second filtration Glim is given by

Gqlim = (Fn+1−q
lim )⊥,

where the orthogonal complement is with respect to the pairing h. The conclusion is
that we get a mixed Hodge structure on V with weight filtration W•−n and Hodge
filtrations Flim and Glim . Schmid calls this the limiting mixed Hodge structure.
Moreover, RS ∈ End(V ) is an endomorphism of this mixed Hodge structure, in the
sense that it preserves all three filtrations. Each eigenspace Eα(RS) is therefore
itself a mixed Hodge structure, with V being the direct sum.

The pairing h : V ⊗C V → C induces hermitian pairings

h` : grW` ⊗CgrW−` → C,
and the results in Theorem 10.3 can be summarized by saying that

R`N : grW` → grW−`(−`)
is an isomorphism of Hodge structures, and that for each ` ≥ 0, the pairing
(v′, v′′) 7→ (−1)`h`(v

′, R`Nv
′′) polarizes the Hodge structure on the primitive part

ker
(
R`+1
N : grW` → grW−`−2

)
.

Schmid says that the limiting mixed Hodge structure is “polarized by the pairing h
and the nilpotent operator RN”. The advantage of this formulation is that it does
not mention the semisimple operator H (which represented an additional choice).
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